Model#
- class Config#
Bases:
object- arbitrary_types_allowed = True#
- smart_union = True#
- validate_assignment = True#
- class FisherModel(ode_x0: List | numpy.ndarray | eDPM.model.preprocessing.MultiVariableDefinition | NoneType, ode_t0: List[float] | numpy.ndarray | float | eDPM.model.preprocessing.VariableDefinition | NoneType, times: tuple | List[float] | List[List[float]] | numpy.ndarray | eDPM.model.preprocessing.VariableDefinition | NoneType, inputs: List, parameters: Tuple[float, ...], ode_fun: collections.abc.Callable, ode_dfdx: collections.abc.Callable, ode_dfdp: collections.abc.Callable, obs_fun: collections.abc.Callable | int | List[int] = None, obs_dgdx: collections.abc.Callable = None, obs_dgdp: collections.abc.Callable = None, ode_dfdx0: collections.abc.Callable = None, obs_dgdx0: collections.abc.Callable = None, ode_args: Any = None, identical_times: bool = False, covariance: dict | eDPM.model.preprocessing.CovarianceDefinition | NoneType = None)#
Bases:
_FisherModelOptions,_FisherModelBase- classmethod all_observables_defined(values)#
- classmethod validate_covariance(cov)#
- classmethod validate_inputs(inp)#
- classmethod validate_ode_t0(ode_t0)#
- classmethod validate_ode_x0(ode_x0)#
- classmethod validate_times(times)#
- class FisherModelParametrized(ode_fun: collections.abc.Callable, ode_dfdx: collections.abc.Callable, ode_dfdp: collections.abc.Callable, variable_definitions: eDPM.model.fisher_model.FisherVariables, variable_values: eDPM.model.fisher_model.FisherVariables, obs_fun: collections.abc.Callable | int | List[int] = None, obs_dgdx: collections.abc.Callable = None, obs_dgdp: collections.abc.Callable = None, ode_dfdx0: collections.abc.Callable = None, obs_dgdx0: collections.abc.Callable = None, ode_args: Any = None, identical_times: bool = False, covariance: dict | eDPM.model.preprocessing.CovarianceDefinition | NoneType = None)#
Bases:
_FisherModelParametrizedOptions,_FisherModelParametrizedBase- init_from()#
Initialize a parametrized FisherModel with initial guesses for the sampled variables.
- Parameters:
fsm (FisherModel) – A user-defined fisher model.
- Raises:
TypeError – Currently does not accept sampling over initial values ode_x0.
- Returns:
Fully parametrized model with initial guesses which can be numerically solved.
- Return type:
- class FisherResultSingle(ode_x0: List | numpy.ndarray | eDPM.model.preprocessing.MultiVariableDefinition | NoneType, ode_t0: List[float] | numpy.ndarray | float | eDPM.model.preprocessing.VariableDefinition | NoneType, times: tuple | List[float] | List[List[float]] | numpy.ndarray | eDPM.model.preprocessing.VariableDefinition | NoneType, inputs: List, parameters: Tuple[float, ...], ode_solution: Any, sensitivities: numpy.ndarray, observables: numpy.ndarray, ode_args: Any = None, identical_times: bool = False, covariance: dict | eDPM.model.preprocessing.CovarianceDefinition | NoneType = None)#
Bases:
_FisherResultSingleOptions,_FisherResultSingleBase
- class FisherResults(ode_fun: collections.abc.Callable, ode_dfdx: collections.abc.Callable, ode_dfdp: collections.abc.Callable, variable_definitions: eDPM.model.fisher_model.FisherVariables, variable_values: eDPM.model.fisher_model.FisherVariables, criterion: float, S: numpy.ndarray, C: numpy.ndarray, criterion_fun: collections.abc.Callable, individual_results: list, relative_sensitivities: bool, obs_fun: collections.abc.Callable | int | List[int] = None, obs_dgdx: collections.abc.Callable = None, obs_dgdp: collections.abc.Callable = None, ode_dfdx0: collections.abc.Callable = None, obs_dgdx0: collections.abc.Callable = None, ode_args: Any = None, identical_times: bool = False, covariance: dict | eDPM.model.preprocessing.CovarianceDefinition | NoneType = None, penalty_discrete_summary: Any = None)#
Bases:
_FisherResultsOptions,_FisherResultsBase
- class FisherVariables(ode_x0: List | ndarray | MultiVariableDefinition | None, ode_t0: List[float] | ndarray | float | VariableDefinition | None, times: tuple | List[float] | List[List[float]] | ndarray | VariableDefinition | None, inputs: List, parameters: Tuple[float, ...], ode_args: Any = None, identical_times: bool = False, covariance: dict | CovarianceDefinition | None = None)#
Bases:
_FisherVariablesOptions,_FisherVariablesBaseContains all necessary and optional numerical values needed to fully specify the model. Note that it is not possible to directly use this class to numerically solve the model since a initial guess for the corresponding values needs to be made.
- Parameters:
ode_x0 (float, List[float], List[List[float]]) – Initial values of the ODE.
ode_t0 (float, List[float]) – Initial time point of the ODE.
times – Time points at which the ODE should be evaluated.
_FisherVariablesOptions (_type_) –
- list_to_list_of_vectors(ls: list) List[ndarray]#
- list_to_nparray_of_float(ls: list) List[float]#
- nparray_correct_shape_and_float(ls: ndarray) List[float]#
- nparray_to_list_of_vectors(npa: ndarray) List[ndarray]#
- times_nparray_to_correct_shape(times: ndarray) ndarray#